Lesson 6. Second Order Dynamical Systems

1 Linear second order dynamical systems

• A second order dynamical system is a DS of the form

$$A_{n+2} = f(A_{n+1}, A_n) \quad n = 0, 1, 2, \dots$$

- In other words, in a second order DS,
- The initial conditions of a second order DS specify
- A linear second order DS is a DS of the form

$$A_{n+2} = aA_{n+1} + bA_n + c \quad n = 0, 1, 2, \dots$$
(*)

• A linear second order DS always has solutions

Example 1. Consider the DS $A_{n+2} = -A_{n+1} + 6A_n$, n = 0, 1, 2, ... with the $A_0 = 7$, $A_1 = -6$. Find the first next five terms of the sequence: A_2 , A_3 , A_4 , A_5 , A_6 .

2 Finding solutions to a linear second order DS

• Find the roots *r*, *s* of the **characteristic equation**

$$x^2 = ax + b$$

• If $a + b \neq 1$, then the general solution to (*) is

$$A_{n} = \begin{cases} c_{1}r^{n} + c_{2}s^{n} + \frac{c}{1-a-b} & \text{if } r \neq s \\ (c_{1} + c_{2}n)r^{n} + \frac{c}{1-a-b} & \text{if } r = s \end{cases} \text{ for any values of } c_{1}, c_{2}$$

• If a + b = 1, then the general solution to (*) is

$$A_n = \begin{cases} c_1(a-1)^n + c_2 + \left(\frac{c}{2-a}\right)n & \text{if } a+b=1, a\neq 2\\ c_1 + c_2n + \left(\frac{c}{2}\right)n^2 & \text{if } a=2, b=-1 \end{cases} \text{ for any values of } c_1, c_2$$

• Note that *r* and *s* could be imaginary! We will not consider examples of this type

Example 2. Consider the DS $A_{n+2} = -A_{n+1} + 6A_n$, n = 0, 1, 2, ...

- a. Find the general solution to this DS.
- b. Find the particular solution to this DS that satsifies the IC $A_0 = 7$, $A_1 = -6$.
- c. Does your answer to b match your answer to Example 1?

Example 3. Find the particular solution to the DS $A_{n+2} = 6A_{n+1} - 9A_n + 2$ that satisfies $A_0 = 1$, $A_1 = 1$. What is A_{10} ?

Example 4. Find the particular solution to the DS $A_{n+2} = 3A_{n+1} - 2A_n + 5$ that satisfies $A_0 = 1$, $A_1 = 0$. What is A_{10} ?

Example 5. Find the particular solution to the DS $A_{n+2} = 2A_{n+1} - A_n + 3$ that satisfies $A_0 = 0$, $A_1 = -1$. What is A_{10} ?

Example 6. Find the particular solution to the DS $A_{n+2} = 2A_{n+1} - A_n + 4$ that satisfies $A_0 = 3$, $A_1 = 6$. What is A_{10} ?